

Applying MBSE to the Energy Sector

DIRK ZWEMER, MANAS BAJAJ & ROSE YNTEMA, INTERCAX LLC

About Intercax

- Georgia Tech spin-off 2008
- Location: Tech Square, Atlanta;
 Pune IT Park, Pune, India
- Focus: Software for MBSE
 - Syndeia PLM/CAD/CAE/ALM
 Integration with SysML
 - SysML parametric solvers
- Training, consulting, custom apps
 - 3500+ students since 2008
- Customers
 - Gov: NASA, DoD, DoE
 - Commercial: aero, auto, transportation, consumer goods, energy, mfg., healthcare

The Engineering Software Universe

- Organizations deal with a diverse, multi-vendor engineering toolset.
- Organization create and store product/system data in a variety of tools, models and repositories: PLM, ALM, CAD, spreadsheets, SysML models...

The Engineering Software Universe

 The goal of MBE is to create a single, unified model (a Graph) extending over all the tools and data repositories.

Why the Energy Sector Needs MBE

- Diversity of model types and tools
 - Multiple disciplines electrical, mechanical, software, ...
 - Multiple purposes design, construction, operation
 - Multiple scales individual user to national grid
 - Multiple stakeholders financial, environmental, ...
- Resilience, safety and security are critical
 - MBE should expose unexpected chains of causation
 - Predict emergent behaviors and vulnerabilities

Building the Graph

- POPULATING THE SYSML MODEL FROM EXTERNAL TOOLS
- ADDING RELATIONSHIPS WITHIN THE SYSML MODEL
- POPULATING EXTERNAL TOOLS FROM THE SYSML MODEL

Total System Model

Importing Requirements into SysML

Importing Requirements into SysML

Building the SysML model

cax

Project Requirements into Process Flows

Modeling the Project Organization

Linking Project Requirements, Processes, Tasks and Organization

Modeling the Power Plant Structure

Modeling Power Plant Behavior

Modeling Power Plant Interfaces

Total System Model

Linking Power Plant Architecture and Simulation

Using the Graph

- ACCESSING EXTERNAL DATA THROUGH THE SYSML MODEL
- COMPARING AND SYNCHRONIZING BETWEEN SYSML AND EXTERNAL DATA

Accessing CAD Files through the SysML Model

Accessing Project Management Issues

Specification of Requirement properties Comparing Linked Requirements Specify properties of the selected Requirement in the properties specification table. Choose the Expert or All options from the Properties drop-down list to see more properties. in SysML and DOORS NG □ % □ 2 2437 - Facility Emissions Release III ĝi 📻 ⊡ĝ ⊡ģ abc Properties: Expert Usage in Diagrams □ Requirement - Sub Requirements -- 🗈 Relations Satisfies -- 🗈 Tags 2437 - Facility Emissions Release Documentation/Hyperlinks Traceability The facility shall not release more than 15 Language Properties Syndeia Dashboard (3.0.23) - Nuclear Power Plant 161118 millicuries per year or more than 1 millicuries on any individual day. Repository Manager 🗟 Connection Manager 🞇 Connection Browser 🖫 Connection Summary 📝 Comparison Result 🔧 Settings ■ Requirement [Class] [SysML::Requirements] Applied Stereotype «» DOORS-NG_Requirement [Class] [Syndeia_Prof Q- Type here to filter connections Export to Excel Source Qualified Name Nuclear Power Requirements::Nuclear Power Plant Conn ID ▼ Source ↑ ▼ Latest Target Verify Method

X

2438 2438 - Facility Specification [Nuclear_P.

Nuclear Power Plant [Nuclear Power Plant]

Nuclear_Power_Plant [Nuclear_Power_Plant]

Forward

Help

The textual representation or a reference to the textual representation of the requirement.

Close

Specification of Requirement 2437 - Facility Emissions Release

☐ Traceabilit

Owner

Refines

Traced From

Refined By

Traced To Verified By

Derived From

▶ Q- Type here to filter properties

Satisfied By

Comparing Structure in SysML and PLM

How can linked models protect proprietary data? intercax

Querying the Graph

- VISUALIZING THE INTERMODEL CONNECTIONS
- VISUALIZING EXTENDED CHAINS
- QUERYING THE GRAPH DATABASE (PROTOTYPE)

intercax

Global Visualization

Directed Visualization

Query: Show me all the SysML requirements

Query: Show me all the SysML requirements connected to Jama requirements

Query: Show me all the SysML requirements the Nuclear Power Plant block or its parts must satisfy directly

Query: Is GitHub file "Plant_Safety_Software" connected to DOORS requirement "2433 - Control and Safety Software"?

Building a Bigger Graph

- USING YOUR MODEL IN A LARGER MODEL
- PERFORMING PARAMETRIC ANALYSES

Energy System Model Integration

Smart Grid Model

bdd [Package] Analysis Blocks [Analysis BDD] «block» CostSavingsAnalysis dpcopt : DailyPowerCost dpcunopt : DailyPowerCost cd1 : CostDiff dailyCostUnopt: \$ dailyCostOpt: \$ dailyCostDiff: \$ perLowOptim: Real hctrla. «block» **HVAC Controller OptimizedHomeHVACAnalysis** oof1 : OccupOptimFac ohp1 : OptHomePower shiftAllowance : Real «block» «block» Smart Grid **HomeHVACAnalysis** hp1 : HomePower occavg1 : OccupAvg tout : Deg_F power: KW costDiff: \$pKwhr perLowCost : Real zha 1..* «block» ZoneHVACAnalysis zn_ref: Zone tset : Deg_F power : KW tout : Deg_F occupancy : Real zv_ref. ts_ref «block» «block» KitchenZoneHVACAnalysis RoomHVACAnalysis Zone Vent **Temp Sensor** khp1: KitchenHVACPower rhp1: RoomHVACPower tset: Deg_F app_ref: Appliances [1..*] k3 : Real

Smart Home Model

Energy System Analysis

Energy System Analysis

Why MBE Should Look Like Facebook

- It should tell you what's happened overnight
- It should be available 24/7 from multiple portals
- All your friends should be on it
- You can comment on your friend's stuff
- It should protect your private information
- It should make you aware of connections you didn't know existed

Summary

- The goal of Model-Based Engineering is to create a single, unified model (a Graph) extending over all the tools and data repositories the energy industry uses.
- MBE is more about creating and exploring connections than making lists or building structures.

Questions and Comments?

www.intercax.com
email info@intercax.com
blog www.intercax.com/blog
Twitter @intercax | LinkedIn intercax-llc